

Time-to-Temperature Equation

Т	=	<u>.00222 x M x ΔT</u> Ρ
Т	=	Heating time (minutes)
Μ	=	Mass of material to be heated (Ib)
$\Delta \mathbf{T}$	=	Change in temperature (°F)
Ρ	=	Power source output (kW)
STE	P 1:	Determine part configuration. (Pipe or flat plate.)If pipe: Record pipe outside diameter (0.D.)Record pipe inside diameter (I.D.)Record pipe wall thickness= in.
STE	P 2:	Select appropriate blanket configuration. <i>(See Induction Heating Blanket spec sheet.)</i> Record blanket length (in.), width (in.)
STE	P 3:	Calculate mass of material to be heated. Pipe: M = $3.1416 \left[\frac{\text{pipe 0.D.} (in.) + \text{pipe I.D.} (in.)}{2} \right] \times$ wall thickness (in.) x blanket width (in.) x .284 = []] b. or Flat Plate: M = blanket length (in.) x blanket width (in.) x material thickness (in.) x .284 = []] b.
STE	P 4:	Determine change in temperature. ΔT = Desired part temp (°F) - ambient part temp (°F) = °F
STE	P 5:	Select power source output. 5 kW power source or 25 kW power source =kW
STE	P 6:	Substitute variables and calculate time. $T = \frac{.00222 \times (STEP 3) \times (STEP 4)}{(STEP 5)} = \underline{\qquad}$ minutes

Note: All calculated times are based on controlled environmental conditions and are approximate. Actual heating times may vary from the time calculated above.

Issued May 2000

Time-to-Temperature Equation (Metric)

T	=	<u>.01038 x M x ∆T</u> P	
Т	=	Heating time (minutes)	
Μ	=	Mass of material to be heated (kg)	
$\Delta \mathbf{T}$	=	Change in temperature (°C)	
Ρ	=	Power source output (kW)	
STE	P 1:	Determine part configuration. <i>(Pipe or flat plate.)</i> If pipe: Record pipe outside diameter (0.D.) Record pipe inside diameter (1.D.) Record pipe wall thickness	= cm = cm = cm
STE	P 2:	Select appropriate blanket configuration. <i>(See Induction Heating Blanket spec sheet.)</i> Record blanket length (cm), width (cm)	
STE	P 3:	Calculate mass of material to be heated. Pipe: M = $3.1416 \left[\frac{\text{pipe 0.D.} (cm) + \text{pipe 1.D.} (cm)}{2} \right] \times wall thickness (cm) x blanket width (cm) x .00786 or$	= kg
		Flat Plate: M = blanket length (cm) x blanket width (cm) x material thickness (cm) x .00786	= kg
STE	P 4:	Determine change in temperature. ΔT = Desired part temp (°C) - ambient part temp (°C)	=°C
STE	P 5:	Select power source output. 5 kW power source or 25 kW power source	=kW
STE	P 6:	Substitute variables and calculate time. $T = \frac{.01038 \times (STEP 3) \times (STEP 4)}{(STEP 5)} = $	minutes

Note: All calculated times are based on controlled environmental conditions and are approximate. Actual heating times may vary from the time calculated above.

