Time-to-Temperature
 Calculator

Carbon Steel

Time-to-Temperature Equation

\mathbf{T}	$=\frac{.00222 \times \mathbf{M x \Delta T}}{\mathbf{P}}$
\mathbf{T}	$=$ Heating time (minutes)
\mathbf{M}	$=$ Mass of material to be heated (lb)
$\Delta \mathbf{T}$	$=$ Change in temperature $\left({ }^{\circ} \mathrm{F}\right)$
\mathbf{P}	$=$ Power source output (kW)

STEP 1: Determine part configuration. (Pipe or flat plate.) If pipe: Record pipe outside diameter (0.D.)
$=$ \qquad in.
Record pipe inside diameter (I.D.)
= \qquad in.
Record pipe wall thickness
$=$ \qquad in.

STEP 2: Select appropriate blanket configuration.
(See Induction Heating Blanket spec sheet.)
Record blanket length \qquad (in.), width \qquad (in.)

STEP 3: Calculate mass of material to be heated.
Pipe: $M=3.1416\left[\frac{\text { pipe 0.D.___ (in.) }+ \text { pipe I.D.__ (in.) }}{2}\right] \times$ wall thickness \qquad (in.) \times blanket width \qquad (in.) $\times .284$ \qquad lb. or
Flat Plate: $\mathrm{M}=$ blanket length \qquad (in.) x
blanket width \qquad (in.) x material thickness \qquad (in.) $\times .284=$ \qquad lb .

STEP 4: Determine change in temperature.
$\Delta \mathrm{T}=$ Desired part temp. \qquad (${ }^{\circ} \mathrm{F}$) - ambient part temp. \qquad ($\left.{ }^{\circ} \mathrm{F}\right)=$ \qquad ${ }^{\circ} \mathrm{F}$

STEP 5: Select power source output.
5 kW power source or 25 kW power source
$=$ \qquad kW

STEP 6: Substitute variables and calculate time.
$T=\frac{.00222 \times(\text { STEP 3) } \times(\text { STEP 4) }}{(\text { STEP 5) }}$
$=$ \qquad minutes

Note: All calculated times are based on controlled environmental conditions and are approximate. Actual heating times may vary from the time calculated above.

Time-to-Temperature Equation (Metric)

$$
\begin{array}{ll}
\mathbf{T} & =\frac{.01038 \times \mathbf{M} \times \Delta \mathbf{T}}{\mathbf{P}} \\
\mathbf{T} & =\text { Heating time (minutes) } \\
\mathbf{M} & =\text { Mass of material to be heated }(\mathrm{kg}) \\
\Delta \mathbf{T} & =\text { Change in temperature }\left({ }^{\circ} \mathrm{C}\right) \\
\mathbf{P} & =\text { Power source output }(\mathrm{kW})
\end{array}
$$

STEP 1: Determine part configuration. (Pipe or flat plate.)
If pipe: Record pipe outside diameter (0.D.) \qquad
Record pipe inside diameter (I.D.)
$=$ \qquad cm

Record pipe wall thickness
= \qquad cm

STEP 2: Select appropriate blanket configuration.
(See Induction Heating Blanket spec sheet.)
Record blanket length \qquad (cm), width \qquad (cm)

STEP 3: Calculate mass of material to be heated.
Pipe: $M=3.1416\left[\frac{\text { pipe O.D.___ }(\mathrm{cm})+\text { pipe I.D. }}{2}\right] \times$
wall thickness \qquad (cm) x blanket width \qquad (cm) x 00786 \qquad kg
or
Flat Plate: $\mathrm{M}=$ blanket length \qquad (cm) x
blanket width \qquad (cm) x material thickness \qquad (cm) x. 00786
\qquad kg

STEP 4: Determine change in temperature.
$\Delta \mathrm{T}=$ Desired part temp. \qquad ($\left.{ }^{\circ} \mathrm{C}\right)$ - ambient part temp. \qquad $\left({ }^{\circ} \mathrm{C}\right)=$ \qquad ${ }^{\circ} \mathrm{C}$

STEP 5: Select power source output.
5 kW power source or 25 kW power source \qquad kW

STEP 6: Substitute variables and calculate time.

$$
\mathrm{T}=\frac{.01038 \times(\text { STEP 3) } \times(\text { STEP } 4)}{(\text { STEP } 5)}
$$

$$
=
$$

\qquad minutes

Note: All calculated times are based on controlled environmental conditions and are approximate. Actual heating times may vary from the time calculated above.

